Skip to content

Menu
  • USC Stem Cell
  • About
    • Stem Cell FAQs
    • Mission and History
    • California’s Leadership in Stem Cell Research
    • Founding Supporters and Ambassadors
    • Well-being
    • Jobs
  • News & Events
    • News
    • Events
    • Videos
    • Impact Reports and Newsletters
  • Research
    • Department Faculty
    • Eli and Edythe Broad Center Faculty
    • Research Facilities
    • USC+CHLA Alpha Clinic
    • Translational Research Committee
    • USC Stem Cell Research Oversight Committee (SCRO)
    • Apply to Become Center Faculty
  • Education & Training
    • Undergraduate
    • Master’s Program
    • PhD Program
    • Medical Education
    • Postdoctoral Opportunities
    • Our Trainees
  • Funding
  • Inclusive Excellence
  • Support Us
  • Contact
    • Directory
    • Subscribe
  • Search

Alligator stem cell study gives clues to tooth regeneration

By  Alison Trinidad

Posted May 13, 2013
Reading Time 3 minutes

in this section

  • News
  • Events
  • Videos
  • Impact Reports and Newsletters

read this next

The cellular and molecular composition of feathers can be experimentally manipulated to test the hypothesis that certain molecular components may enhance or suppress pigment differentiation.

Birds of a feather flock together for stem cell research

  • Follow us on
  • Like us on
  • Follow us on
  • Follow us on
American alligator skull (top); USC researchers identify three developmental phases for each alligator tooth unit, comprising a functional tooth (f), replacement tooth (r) and dental lamina (middle); a three-dimensional image of alligator tooth unit (bottom). (Photos courtesy of Cheng-Ming Chuong)
American alligator skull (top); USC researchers identify three developmental phases for each alligator tooth unit, comprising a functional tooth (f), replacement tooth (r) and dental lamina (middle); a three-dimensional image of alligator tooth unit (bottom). (Photos courtesy of Cheng-Ming Chuong)

Alligators may help scientists learn how to stimulate tooth regeneration in people, according to new research led by the Keck School of Medicine of USC.

For the first time, a global team of researchers led by USC Professor Cheng-Ming Chuong has uncovered unique cellular and molecular mechanisms behind tooth renewal in American alligators. Their study appeared in Proceedings of the National Academy of Sciences, the official journal of the National Academy of Sciences.

“Humans naturally only have two sets of teeth — baby teeth and adult teeth,” Chuong said. “Ultimately, we want to identify stem cells that can be used as a resource to stimulate tooth renewal in adult humans who have lost teeth. But to do that, we must first understand how they renew in other animals and why they stop in people.”

Whereas most vertebrates can replace teeth throughout their lives, human teeth are naturally replaced only once, despite the lingering presence of a band of epithelial tissue called the dental lamina, which is crucial to tooth development. Because alligators have well-organized teeth with similar form and structure as mammalian teeth and are capable of lifelong tooth renewal, the authors reasoned that they might serve as models for mammalian tooth replacement.

“Alligator teeth are implanted in sockets of the dental bone, like human teeth,” said Ping Wu, assistant professor of pathology at the Keck School and first author of the study. “They have 80 teeth, each of which can be replaced up to 50 times over their lifetime, making them the ideal model for comparison to human teeth.”

Using microscopic imaging techniques, the researchers found that each alligator tooth is a complex unit of three components — a functional tooth, a replacement tooth and the dental lamina — in different developmental stages. The tooth units are structured to enable a smooth transition from dislodgement of the functional, mature tooth to replacement with the new tooth. Identifying three developmental phases for each tooth unit, the researchers concluded that the alligator dental laminae contain what appear to be stem cells from which new replacement teeth develop.

“Stem cells divide more slowly than other cells,” said co-author Randall Widelitz, associate professor of pathology at the Keck School. “The cells in the alligator’s dental lamina behaved like we would expect stem cells to behave. In the future, we hope to isolate those cells from the dental lamina to see whether we can use them to regenerate teeth in the lab.”

The researchers also intend to learn what molecular networks are involved in repetitive renewal and hope to apply the principles to regenerative medicine in the future.

The authors also reported novel cellular mechanisms by which the tooth unit develops in the embryo and molecular signaling that speeds growth of replacement teeth when functional teeth are lost prematurely.

Co-authors included colleagues from the Louisiana Department of Wildlife and Fisheries, University of Georgia, National Cheng Kung University, National Taiwan University and Xiangya Hospital in China.

The research was supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases (grant numbers 5R01AR042177-19, 5R01AR060306-03 and 2R01AR047364-11A1).

Read more about: Muscles and Skeleton
Mentioned in this article: Cheng-Ming Chuong, MD, PhD

Post navigation

← Birds of a feather flock together for stem cell research
Nobel Laureate discusses history of cloning →
Keck School of Medicine of USC
1975 Zonal Ave.
Los Angeles, CA 90033
Google Map
Phone: (323) 442-1900
Hours:
Monday–Friday
7:30am–5:00pm PST
Resources For
  • Current Students
  • Faculty & Staff
  • Patients
  • Community
  • Press
  • Visitors
Areas of Focus
  • Education & Training
  • Research
  • Patient Care
  • Community
Departments and Offices
  • Departments
  • Institutes and Centers
  • Research Programs
  • Administrative Offices
About Keck
  • History
  • Leadership
  • Annual Report
  • Digital Accessibility
Intranet
  • Privacy Notice
  • Notice of Non-Discrimination
  • Smoke-Free Policy

Copyright © 2025 University of Southern California

  • Research
    • Research HomeCutting-edge research drives innovation in healthcare at the Keck School of Medicine
    • Where Research Happens
    • Research Funding
    • Training and Education
    • Researcher Resources
    • Collaborate and Partner
  • Education
    • Education HomeNurturing future healthcare leaders through excellence in education
    • MD Program
    • Residencies and Clinical Fellowships
    • PhD Programs
    • Master’s Programs
    • Professional Programs
    • Post-Doctoral Researchers
    • CME, Certificate & Undergraduate Programs
  • Departments, Institutes & Centers
    • Basic Science and Clinical DepartmentsExploring foundational science and specialized clinical fields
    • Institutes and Centers
    • Research Programs
  • About
    • About the Keck SchoolDiscover the mission, history, and vision of the Keck School of Medicine
    • History
    • Leadership
    • Dean’s Corner
    • Life in Southern California
    • Visit
  • Our Faculty
  • Current Students
  • Newsroom
  • Events Calendar
  • Support the Keck School
  • USC.edu
  • Are you a Patient?