Skip to content

Menu
  • USC Stem Cell
  • About
    • Stem Cell FAQs
    • Mission and History
    • California’s Leadership in Stem Cell Research
    • Founding Supporters and Ambassadors
    • Well-being
    • Jobs
  • News & Events
    • News
    • Events
    • Videos
    • Impact Reports and Newsletters
  • Research
    • Department Faculty
    • Eli and Edythe Broad Center Faculty
    • Research Facilities
    • USC+CHLA Alpha Clinic
    • Translational Research Committee
    • USC Stem Cell Research Oversight Committee (SCRO)
    • Apply to Become Center Faculty
  • Education & Training
    • Undergraduate
    • Master’s Program
    • PhD Program
    • Medical Education
    • Postdoctoral Opportunities
    • Our Trainees
  • Funding
  • Inclusive Excellence
  • Support Us
  • Contact
    • Directory
    • Subscribe
  • Search

Stopping arthritis before it starts

By  Sarah Nightingale

Posted December 9, 2021
Reading Time 3 minutes

in this section

  • News
  • Events
  • Videos
  • Impact Reports and Newsletters

read this next

Denis Evseenko (Photo by Chris Shinn)

From babies to senior citizens, USC Stem Cell researcher Denis Evseenko is working for better outcomes

  • Follow us on
  • Like us on
  • Follow us on
  • Follow us on
Frank Petrigliano, MD, and Denis Evseenko, MD, PhD, have been collaborating on medical innovations to help heal and even regenerate damaged joints. (Photo/Ricardo Carrasco III)
Frank Petrigliano, MD, (left) and Denis Evseenko, MD, PhD (Photo by Ricardo Carrasco III)

A novel off-the-shelf bio-implant containing embryonic stem cells has the potential to revolutionize the treatment of cartilage injuries

More than a million Americans undergo knee and hip replacements each year. It’s a last resort treatment for pain and mobility issues associated with osteoarthritis, a progressive disease caused by degeneration of the protective layer of cartilage that stops our bones grinding together when we sit, stand, write, or move around.

But what if doctors could intervene and repair damaged cartilage before surgery is needed?

For the first time, researchers at the Keck School of Medicine of USC have used a stem cell-based bio-implant to repair cartilage and delay joint degeneration in a large animal model. The work will now advance into humans with support from a $6 million grant from the California Institute of Regenerative Medicine (CIRM).

The research, recently published in npj Regenerative Medicine, was led by two researchers at the Keck School of Medicine of USC: Denis Evseenko, MD, PhD, associate professor of orthopaedic surgery, and stem cell biology and regenerative medicine, director of the skeletal regeneration program, and vice chair for research of orthopaedic surgery; and Frank Petrigliano, MD, associate professor of clinical orthopaedic surgery and chief of the USC Epstein Family Center for Sports Medicine.

Osteoarthritis occurs when the protective cartilage that coats the ends of the bones breaks down over time, resulting in bone-on-bone friction. The disorder, which is often painful, can affect any joint, but most commonly affects those in our knees, hips, hands and spine.

To prevent the development of arthritis and alleviate the need for invasive joint replacement surgeries, the USC researchers are intervening earlier in the disease.

“In some patients joint degeneration starts with posttraumatic focal lesions, which are lesions in the articular (joint) cartilage ranging from 1 to 8 cm2 in diameter,” Evseenko said. “Since these can be detected by imaging techniques such as MRI, this opens up the possibility of early intervention therapies that limit the progression of these lesions so we can avoid the need for total joint replacement.”

That joint preservation technology developed at USC is a therapeutic bio-implant, called Plurocart, composed of a scaffold membrane seeded with stem cell-derived chondrocytes—the cells responsible for producing and maintaining healthy articular cartilage tissue. Building on previous research to develop and characterize the implant, the current study involved implantation of the Plurocart membrane into a pig model of osteoarthritis. The study resulted in the long-term repair of articular cartilage defects.

“This is the first time an orthopaedic implant composed of a living cell type was able to fully integrate in the damaged articular cartilage tissue and survive in vivo for up to six months,” Evseenko said. “Previous studies have not been able to show survival of an implant for such a long time.”

Evseenko said molecular characterization studies showed the bio-implant mimicked natural articular cartilage, with more than 95 percent of implanted cells being identified as articular chondrocytes. The cartilage tissue generated was also biomechanically functional—both strong enough to withstand compression and elastic enough to accommodate movement without breaking.

With support from the $6 million translational grant from CIRM, the researchers are using this technology to manufacture the first 64 Plurocart implants to be tested in humans.

“Many of the current options for cartilage injury are expensive, involve complex logistical planning, and often result in incomplete regeneration,” said Petrigliano. “Plurocart represents a practical, inexpensive, one-stage therapy that may be more effective in restoring damaged cartilage and improve the outcome of such procedures.”

Read more about: Muscles and Skeleton
Mentioned in this article: Denis Evseenko, MD, PhD

Post navigation

← USC collaboration helps FaceBase reach 1,000-dataset milestone
Curiosity, commitment and compassion drive Yichen Li’s research in neurodegenerative diseases →
Keck School of Medicine of USC
1975 Zonal Ave.
Los Angeles, CA 90033
Google Map
Phone: (323) 442-1900
Hours:
Monday–Friday
7:30am–5:00pm PST
Resources For
  • Current Students
  • Faculty & Staff
  • Patients
  • Community
  • Press
  • Visitors
Areas of Focus
  • Education & Training
  • Research
  • Patient Care
  • Community
Departments and Offices
  • Departments
  • Institutes and Centers
  • Research Programs
  • Administrative Offices
About Keck
  • History
  • Leadership
  • Annual Report
  • Digital Accessibility
Intranet
  • Privacy Notice
  • Notice of Non-Discrimination
  • Smoke-Free Policy

Copyright © 2025 University of Southern California

  • Research
    • Research HomeCutting-edge research drives innovation in healthcare at the Keck School of Medicine
    • Where Research Happens
    • Research Funding
    • Training and Education
    • Researcher Resources
    • Collaborate and Partner
  • Education
    • Education HomeNurturing future healthcare leaders through excellence in education
    • MD Program
    • Residencies and Clinical Fellowships
    • PhD Programs
    • Master’s Programs
    • Professional Programs
    • Post-Doctoral Researchers
    • CME, Certificate & Undergraduate Programs
  • Departments, Institutes & Centers
    • Basic Science and Clinical DepartmentsExploring foundational science and specialized clinical fields
    • Institutes and Centers
    • Research Programs
  • About
    • About the Keck SchoolDiscover the mission, history, and vision of the Keck School of Medicine
    • History
    • Leadership
    • Dean’s Corner
    • Life in Southern California
    • Visit
  • Our Faculty
  • Current Students
  • Newsroom
  • Events Calendar
  • Support the Keck School
  • USC.edu
  • Are you a Patient?