Skip to content

Menu
  • USC Stem Cell
  • About
    • Stem Cell FAQs
    • Mission and History
    • California’s Leadership in Stem Cell Research
    • Founding Supporters and Ambassadors
    • Well-being
    • Jobs
  • News & Events
    • News
    • Events
    • Videos
    • Impact Reports and Newsletters
  • Research
    • Department Faculty
    • Eli and Edythe Broad Center Faculty
    • Research Facilities
    • USC+CHLA Alpha Clinic
    • Translational Research Committee
    • USC Stem Cell Research Oversight Committee (SCRO)
    • Apply to Become Center Faculty
  • Education & Training
    • Undergraduate
    • Master’s Program
    • PhD Program
    • Medical Education
    • Postdoctoral Opportunities
    • Our Trainees
  • Funding
  • Inclusive Excellence
  • Support Us
  • Contact
    • Directory
    • Subscribe
  • Search

Iroquois genes make cartilage cells act “oh so immature”

By  Cristy Lytal

Posted November 9, 2015
Reading Time 2 minutes

in this section

  • News
  • Events
  • Videos
  • Impact Reports and Newsletters

read this next

Developing zebrafish skeleton showing a gene called Sox9 (green) in cartilage-producing cells. (Image by Xinjun He/McMahon Lab)

USC Stem Cell researchers reveal a genetic blueprint for cartilage

  • Follow us on
  • Like us on
  • Follow us on
  • Follow us on
The joint cells are the ones that are not outlined in black. (Image by Amjad Askary and Lindsey Mork/Crump Lab)
The joint cells are the ones that are not outlined in black. (Image by Amjad Askary and Lindsey Mork/Crump Lab)

Arthritis, the leading cause of disability in the U.S., involves the loss of a special type of cartilage cell lining the joints. In a study appearing on the cover of the latest issue of Developmental Cell, first author Amjad Askary — a PhD student in the USC Stem Cell lab of Gage Crump — and his colleagues identify roles for a family of genes, called Iroquois (Irx) genes, in protecting these joint cartilage cells.

While some types of cartilage serve as temporary scaffolds that are later replaced by bone, joint cartilage remains perpetually cushiony, flexible and immature. In order to better understand how this works, the researchers took advantage of the fact that a joint in the zebrafish jaw, called the hyoid joint, contains high levels of one member of the Irx family, Irx7.

When the researchers used gene editing to create mutant zebrafish lacking this gene, the wrong type of cartilage formed at this joint. They then showed that Irx genes promote joint flexibility by turning off genes that stiffen more mature cartilage.

Next, the researchers explored whether Irx genes play a role in species outside the fish tank. To do so, Crump’s team collaborated with the neighboring labs of Justin Ichida, Francesca Mariani and Andy McMahon — all located in the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC — to show that a related Irx gene could repress the maturation of cartilage in mice.

“The Irx genes may be a core machinery that prevents cartilage maturation in species across the animal kingdom,” said the study’s corresponding author Gage Crump, associate professor of stem cell biology and regenerative medicine at USC. “This raises intriguing questions: can we harness the effects of these genes to encourage stem cells to differentiate into new joint cartilage, and do mutations in these genes play a role in inherited osteoarthritis?”

Additional co-authors on the study include Lindsey Mork, Sandeep Paul, Xinjun He, Audrey Izuhara and Suhasni Gopalakrishnan from USC; and Sonja Dabizljevic and Rodney Dale from Loyola University Chicago.

Funding came from the National Institutes of Health (R01 DE018405 and T32), March of Dimes, an A.P. Giannini Foundation fellowship and the Loyola University Chicago’s Provost office.

Read more about: Muscles and Skeleton
Mentioned in this article: Gage Crump, PhD

Post navigation

← USC and Sangamo researchers advance genome editing of blood stem cells
Scientists root out the “bad seeds” of liver cancer →
Keck School of Medicine of USC
1975 Zonal Ave.
Los Angeles, CA 90033
Google Map
Phone: (323) 442-1900
Hours:
Monday–Friday
7:30am–5:00pm PST
Resources For
  • Current Students
  • Faculty & Staff
  • Patients
  • Community
  • Press
  • Visitors
Areas of Focus
  • Education & Training
  • Research
  • Patient Care
  • Community
Departments and Offices
  • Departments
  • Institutes and Centers
  • Research Programs
  • Administrative Offices
About Keck
  • History
  • Leadership
  • Annual Report
  • Digital Accessibility
Intranet
  • Privacy Notice
  • Notice of Non-Discrimination
  • Smoke-Free Policy

Copyright © 2025 University of Southern California

  • Research
    • Research HomeCutting-edge research drives innovation in healthcare at the Keck School of Medicine
    • Where Research Happens
    • Research Funding
    • Training and Education
    • Researcher Resources
    • Collaborate and Partner
  • Education
    • Education HomeNurturing future healthcare leaders through excellence in education
    • MD Program
    • Residencies and Clinical Fellowships
    • PhD Programs
    • Master’s Programs
    • Professional Programs
    • Post-Doctoral Researchers
    • CME, Certificate & Undergraduate Programs
  • Departments, Institutes & Centers
    • Basic Science and Clinical DepartmentsExploring foundational science and specialized clinical fields
    • Institutes and Centers
    • Research Programs
  • About
    • About the Keck SchoolDiscover the mission, history, and vision of the Keck School of Medicine
    • History
    • Leadership
    • Dean’s Corner
    • Life in Southern California
    • Visit
  • Our Faculty
  • Current Students
  • Newsroom
  • Events Calendar
  • Support the Keck School
  • USC.edu
  • Are you a Patient?