Skip to content

Menu
  • USC Stem Cell
  • About
    • Stem Cell FAQs
    • Mission and History
    • California’s Leadership in Stem Cell Research
    • Founding Supporters and Ambassadors
    • Well-being
    • Jobs
  • News & Events
    • News
    • Events
    • Videos
    • Impact Reports and Newsletters
  • Research
    • Department Faculty
    • Eli and Edythe Broad Center Faculty
    • Research Facilities
    • USC+CHLA Alpha Clinic
    • Translational Research Committee
    • USC Stem Cell Research Oversight Committee (SCRO)
    • Apply to Become Center Faculty
  • Education & Training
    • Undergraduate
    • Master’s Program
    • PhD Program
    • Medical Education
    • Postdoctoral Opportunities
    • Our Trainees
  • Funding
  • Inclusive Excellence
  • Support Us
  • Contact
    • Directory
    • Subscribe
  • Search

Promising new target may treat pulmonary fibrosis

By  Debra Kain

Posted March 18, 2015
Reading Time 3 minutes

in this section

  • News
  • Events
  • Videos
  • Impact Reports and Newsletters

read this next

David Warburton

David Warburton’s new book explores current state of regenerative medicine

  • Follow us on
  • Like us on
  • Follow us on
  • Follow us on
Transgenic mouse model used to target lung mesenchymal cells (green) (Image courtesy of Children's Hospital Los Angeles)
Transgenic mouse model used to target lung mesenchymal cells (green) (Image courtesy of Children's Hospital Los Angeles)

By uncovering the mechanism by which fibrous tissue cells in the lung multiply, researchers at The Saban Research Institute of Children’s Hospital Los Angeles (CHLA), along with colleagues in Mexico and Canada, have identified a promising new approach for the treatment of pulmonary fibrosis.

Idiopathic pulmonary fibrosis or IPF — where the disease appears spontaneously and without a known cause – is a severe, chronic lung disease in which the rapid growth of fibrous tissue results in increasingly severe breathing difficulties and a high mortality rate.

Excessive signaling of the growth factor TGF-β is recognized as a central player in lung fibrosis, and its increased expression has been identified in both IPF patients and experimental models of the disease. However, in addition to its pro-fibrotic effect, TGF-β signaling is essential to aspects of other systems, such as appropriate immune response.

Therefore, complete therapeutic blockade of TGF-β pathway isn’t ideal, says the study’s principal investigator Wei Shi, principal investigator with USC Stem Cell and the Developmental Biology and Regenerative Medicine research program at CHLA. “This is a very complicated signaling pathway, which promotes mesenchymal stem cell proliferation, while also acting as a tumor suppressant,” said Shi, who is also an associate professor in the Department of Surgery, Keck School of Medicine of the University of Southern California. “Our goal was to find a way to target specific cells that result in fibrosis without affecting other cells.”

Using a unique transgenic mouse model developed at The Saban Research Institute, the researchers were able to manipulate TGF-β signaling in adult lung mesenchymal cells at selected stages of lung fibrosis. They showed that the progression of fibrosis mediated by TGF-β was independent of early inflammatory processes during initiation of fibrosis – an understanding that is vital in designing therapeutic strategies to stop its progression in IPF patients.

Secondly, they identified a downstream gene called P4HA3 that is important to the overabundant collagen deposition associated with IPF. This gene encodes a component of prolyl 4-hydroxylase, a key enzyme in collagen synthesis. Inhibition of this enzyme was shown to reduce the TGF-β-stimulated collagen production in both cultured fibroblasts (connective tissue cells that produces collagen) and mouse models of lung fibrosis.

“Our data indicate that increased expression of collagen prolyl hydroxylase is one of the important mechanisms underlying the proliferation of fibrous tissue that is mediated by TGF-β. Inhibiting this enzyme appears to be a promising therapy to interfere with excessive collagen production and deposition in IPF patients,” Shi concluded.

Additional contributors to the study include first author Yongfeng Luo and Wei Xu, David Warburton, Hui Chen and Rachel Dong of Children’s Hospital Los Angeles and Keck School of Medicine of USC; Bangping Qian of Nanjing Drum Tower Hospital, Nanjing, China; Moisés Selman, Instituto Nacional de Enfermedades Respiratorias, Mexico; and Jack Gauldie and Martin Kolb, McMaster University, Hamilton, Ontario, Canada.

This work was supported in part by NIH Grants HL109932 and HL068597, a California Institute for Regenerative Medicine (CIRM) Training Grant, and the Canadian Institute for Health Research.

Read more about: Heart Lung and Blood
Mentioned in this article: David Warburton, MD

Post navigation

← Faculty Spotlight: Amy S. Lee
Discovery could lead to biological treatment for common birth defect →
Keck School of Medicine of USC
1975 Zonal Ave.
Los Angeles, CA 90033
Google Map
Phone: (323) 442-1900
Hours:
Monday–Friday
7:30am–5:00pm PST
Resources For
  • Current Students
  • Faculty & Staff
  • Patients
  • Community
  • Press
  • Visitors
Areas of Focus
  • Education & Training
  • Research
  • Patient Care
  • Community
Departments and Offices
  • Departments
  • Institutes and Centers
  • Research Programs
  • Administrative Offices
About Keck
  • History
  • Leadership
  • Annual Report
  • Digital Accessibility
Intranet
  • Privacy Notice
  • Notice of Non-Discrimination
  • Smoke-Free Policy

Copyright © 2025 University of Southern California

  • Research
    • Research HomeCutting-edge research drives innovation in healthcare at the Keck School of Medicine
    • Where Research Happens
    • Research Funding
    • Training and Education
    • Researcher Resources
    • Collaborate and Partner
  • Education
    • Education HomeNurturing future healthcare leaders through excellence in education
    • MD Program
    • Residencies and Clinical Fellowships
    • PhD Programs
    • Master’s Programs
    • Professional Programs
    • Post-Doctoral Researchers
    • CME, Certificate & Undergraduate Programs
  • Departments, Institutes & Centers
    • Basic Science and Clinical DepartmentsExploring foundational science and specialized clinical fields
    • Institutes and Centers
    • Research Programs
  • About
    • About the Keck SchoolDiscover the mission, history, and vision of the Keck School of Medicine
    • History
    • Leadership
    • Dean’s Corner
    • Life in Southern California
    • Visit
  • Our Faculty
  • Current Students
  • Newsroom
  • Events Calendar
  • Support the Keck School
  • USC.edu
  • Are you a Patient?