Skip to content

Menu
  • USC Stem Cell
  • About
    • Stem Cell FAQs
    • Mission and History
    • California’s Leadership in Stem Cell Research
    • Founding Supporters and Ambassadors
    • Well-being
    • Jobs
  • News & Events
    • News
    • Events
    • Videos
    • Impact Reports and Newsletters
  • Research
    • Department Faculty
    • Eli and Edythe Broad Center Faculty
    • Research Facilities
    • USC+CHLA Alpha Clinic
    • Translational Research Committee
    • USC Stem Cell Research Oversight Committee (SCRO)
    • Apply to Become Center Faculty
  • Education & Training
    • Undergraduate
    • Master’s Program
    • PhD Program
    • Medical Education
    • Postdoctoral Opportunities
    • Our Trainees
  • Funding
  • Inclusive Excellence
  • Support Us
  • Contact
    • Directory
    • Subscribe
  • Search

USC researchers close to identifying crucial gene for human cleft lip and palate

By  Zen Vuong

Posted March 23, 2017
Reading Time 3 minutes

in this section

  • News
  • Events
  • Videos
  • Impact Reports and Newsletters

read this next

Yang Chai (Photo courtesy of the Ostrow School of Dentistry of USC)

Discovery could lead to biological treatment for common birth defect

  • Follow us on
  • Like us on
  • Follow us on
  • Follow us on
Yang Chai (Photo courtesy of the Ostrow School of Dentistry of USC)
Yang Chai (Photo courtesy of the Ostrow School of Dentistry of USC)

A group of researchers has found that three siblings born with cleft lip and palate share a common gene mutation associated with the birth defect.

The gene intraflagellar transport 88 (IFT88) ensures transportation antennae (cilia) on embryonic cells travel to the right place, enabling the development of cartilage, bone and smooth muscle in the face and skull.

“Finding this birth defect in every single child in a family is like catching lightning in a bottle because it allowed us to pinpoint the gene mutation that is probably responsible,” said Yang Chai, senior author of the study and director of the Center for Craniofacial Molecular Biology at the Herman Ostrow School of Dentistry of USC. He is also a member of the Department of Stem Cell Biology and Regenerative Medicine at the Keck School of Medicine of USC. “Our finding that the gene IFT88 is involved in cleft lip and palate is unlikely to be mere coincidence.”

However, because this study involved only three children, Chai said more investigation is needed to find a causal relationship.

The study—a collaborative effort between the Ostrow School of Dentistry, the Keck School of Medicine of USC, Children’s Hospital Los Angeles and the nonprofit Operation Smile—was published in the journal Human Molecular Genetics in January.

Operation Smile, an international nonprofit that provides free facial surgeries in developing countries, found and provided support to three siblings—two boys and a girl—in Mexico who were born with cleft lip and palate. Their mother did not have the congenital disorder, but their father did. Surgeons at CHLA repaired the orofacial abnormality.

In America, cleft lip and palate is the most common birth defect, according to data from the Centers for Disease Control and Prevention. An estimated 7,000 children are born with cleft lip and palate every year.

“Although most people are not familiar with cleft lip and palate, it is a common congenital anomaly that impacts survival, feeding, speech and has long-term implications if not repaired early and correctly,” said Pedro Sanchez, a co-author of the study, a medical geneticist at CHLA and an assistant professor of clinical pathology and pediatrics at the Keck School of Medicine. “It occurs in approximately 1 in 1,000 live births.

“Understanding the underlying causes of craniofacial disorders can one day lead to an intervention that can reduce the severity of this birth defect, thereby lessening the social, emotional and financial burden that these families face.”

Genome sequencing locates a key gene mutation

Researchers went through 32,061 unique gene variations to identify IFT88.

“If someone carries this mutation, they may have a higher chance of giving birth to children with cleft lip and palate,” said Chai, associate dean of the Ostrow School. “Doctors can provide consultations to these patients before they give birth, so parents can have surgery lined up and seek out proper care for their newborns.”

The study of IFT88 may eventually have far-reaching implications. Other congenital diseases tied to a genetic disorder of cilia on embryonic cells include retinal degeneration, hearing defects, polydactyly (extra fingers or toes at birth) and brain malformations.

Animal model supports genome sequencing data

Genome-wide association studies usually use the data of hundreds or thousands of patients to identify a gene mutation, yet it is still an association study.

“In our study, however, the animal model and the human mutation match,” Chai said. “In the animal model, there is no doubt. We have shown that 100 percent of the mice who have a single mutation in IFT88 have cleft lip and palate.”

Read more about: Muscles and Skeleton
Mentioned in this article: Yang Chai, DDS, PhD

Post navigation

← Broad Fellow Joanna Smeeton fishes around for stem cell-based treatments for arthritis
Drugs widely used in cancer therapy increase toxicity of chemotherapy in mice →
Keck School of Medicine of USC
1975 Zonal Ave.
Los Angeles, CA 90033
Google Map
Phone: (323) 442-1900
Hours:
Monday–Friday
7:30am–5:00pm PST
Resources For
  • Current Students
  • Faculty & Staff
  • Patients
  • Community
  • Press
  • Visitors
Areas of Focus
  • Education & Training
  • Research
  • Patient Care
  • Community
Departments and Offices
  • Departments
  • Institutes and Centers
  • Research Programs
  • Administrative Offices
About Keck
  • History
  • Leadership
  • Annual Report
  • Digital Accessibility
Intranet
  • Privacy Notice
  • Notice of Non-Discrimination
  • Smoke-Free Policy

Copyright © 2025 University of Southern California

  • Research
    • Research HomeCutting-edge research drives innovation in healthcare at the Keck School of Medicine
    • Where Research Happens
    • Research Funding
    • Training and Education
    • Researcher Resources
    • Collaborate and Partner
  • Education
    • Education HomeNurturing future healthcare leaders through excellence in education
    • MD Program
    • Residencies and Clinical Fellowships
    • PhD Programs
    • Master’s Programs
    • Professional Programs
    • Post-Doctoral Researchers
    • CME, Certificate & Undergraduate Programs
  • Departments, Institutes & Centers
    • Basic Science and Clinical DepartmentsExploring foundational science and specialized clinical fields
    • Institutes and Centers
    • Research Programs
  • About
    • About the Keck SchoolDiscover the mission, history, and vision of the Keck School of Medicine
    • History
    • Leadership
    • Dean’s Corner
    • Life in Southern California
    • Visit
  • Our Faculty
  • Current Students
  • Newsroom
  • Events Calendar
  • Support the Keck School
  • USC.edu
  • Are you a Patient?