Skip to content

Menu
  • USC Stem Cell
  • About
    • Stem Cell FAQs
    • Mission and History
    • California’s Leadership in Stem Cell Research
    • Founding Supporters and Ambassadors
    • Well-being
    • Jobs
  • News & Events
    • News
    • Events
    • Videos
    • Impact Reports and Newsletters
  • Research
    • Department Faculty
    • Eli and Edythe Broad Center Faculty
    • Research Facilities
    • USC+CHLA Alpha Clinic
    • Translational Research Committee
    • USC Stem Cell Research Oversight Committee (SCRO)
    • Apply to Become Center Faculty
  • Education & Training
    • Undergraduate
    • Master’s Program
    • PhD Program
    • Medical Education
    • Postdoctoral Opportunities
    • Our Trainees
  • Funding
  • Inclusive Excellence
  • Support Us
  • Contact
    • Directory
    • Subscribe
  • Search

USC researchers use gelatin instead of the gym to grow stronger muscles

By  Cristy Lytal

Posted June 30, 2016
Reading Time 3 minutes

in this section

  • News
  • Events
  • Videos
  • Impact Reports and Newsletters

read this next

Megan McCain (Photo by Michelle Henry)

Megan McCain wears her heart on a chip

  • Follow us on
  • Like us on
  • Follow us on
  • Follow us on
Skeletal myotubes grown for three weeks on gelatin hydrogel (Image by Archana Bettadapur, Gio Suh, Evelyn Wang, Holly Huber, Alyssa Viscio and Megan McCain)
Skeletal myotubes grown for three weeks on gelatin hydrogel (Image by Archana Bettadapur, Gio Suh, Evelyn Wang, Holly Huber, Alyssa Viscio and Megan McCain)

USC researcher Megan L. McCain and colleagues have devised a way to develop bigger, stronger muscle fibers. But instead of popping up on the bicep of a bodybuilder, these muscles grow on a tiny scaffold or “chip” molded from a type of water-logged gel made from gelatin.

First authors Archana Bettadapur and Gio C. Suh describe these muscles-on-a-chip in a new study published in Scientific Reports.

During normal embryonic development, skeletal muscles form when cells called myoblasts fuse to form muscle fibers, known as myotubes.

In past experiments, mouse myotubes have detached or delaminated from protein-coated plastic scaffolds after approximately one week and failed to thrive.

In this experiment, the researchers fabricated a gel scaffold from gelatin, a derivative of the naturally occurring muscle protein collagen, and achieved much better results. After three weeks, many of the mouse myotubes were still adhering to these gelatin chips, and they were longer, wider and more developed as a result.

The researchers anticipate that human myotubes would thrive equally well on gelatin chips. These new and improved “muscles-on-a-chip” could then be used to study human muscle development and disease, as well as provide a relevant testing ground for new potential drugs.

“Disease and disorders involving skeletal muscle—ranging from severe muscular dystrophies to the gradual decrease in muscle mass with aging—dramatically reduce the quality of life for millions of people,” said McCain, assistant professor of biomedical engineering at the USC Viterbi School of Engineering, and stem cell biology and regenerative medicine at the Keck School of Medicine of USC. “By creating an inexpensive and accessible platform for studying skeletal muscle in the laboratory, we hope to enable research that will usher in new treatments for these patients.”

McCain is already putting the gelatin chips into action as the winner of an Eli and Edythe Broad Innovation Awards in Stem Cell Biology and Regenerative Medicine at USC. The award provides $120,000 to McCain and her two collaborators: Justin Ichida, assistant professor of stem cell biology and regenerative medicine; and Dion Dickman, assistant professor of biological sciences at the USC Dornsife College of Letters, Arts and Sciences. In their project, they will use the gelatin chips for studying amyotrophic lateral sclerosis (ALS), or Lou Gehrig’s disease, which damages the intersections between motor nerve cells and muscle cells, called neuromuscular junctions (NMJs). McCain, Ichida and Dickman will use skin or blood cells from patients with ALS to generate and study NMJs on gelatin chips.

For the study published in Scientific Reports, additional co-authors include Nicholas A. Geisse from Oxford Instruments Asylum Research in Santa Barbara, and Evelyn R. Wang, Clara Hua, Alyssa A. Viscio, Holly A. Huber, Joon Young Kim, and Julie B. Strickland from USC.

The research was supported by the USC Viterbi School of Engineering, The Broad Foundation, the USC Undergraduate Research Associates Program, USC Women in Science and Engineering, a USC Provost’s Undergraduate Research Fellowship and a Keck School of Medicine of USC Summer Research Fellowship.

Read more about: Muscles and Skeleton
Mentioned in this article: Megan McCain, PhD, Justin Ichida, PhD, Dion K. Dickman, PhD

Post navigation

← USC Stem Cell researchers receive the inaugural Broad Innovation Awards
USC Stem Cell researchers listen for clues about how the gene Atoh1 enables hearing →
Keck School of Medicine of USC
1975 Zonal Ave.
Los Angeles, CA 90033
Google Map
Phone: (323) 442-1900
Hours:
Monday–Friday
7:30am–5:00pm PST
Resources For
  • Current Students
  • Faculty & Staff
  • Patients
  • Community
  • Press
  • Visitors
Areas of Focus
  • Education & Training
  • Research
  • Patient Care
  • Community
Departments and Offices
  • Departments
  • Institutes and Centers
  • Research Programs
  • Administrative Offices
About Keck
  • History
  • Leadership
  • Annual Report
  • Digital Accessibility
Intranet
  • Privacy Notice
  • Notice of Non-Discrimination
  • Smoke-Free Policy

Copyright © 2025 University of Southern California

  • Research
    • Research HomeCutting-edge research drives innovation in healthcare at the Keck School of Medicine
    • Where Research Happens
    • Research Funding
    • Training and Education
    • Researcher Resources
    • Collaborate and Partner
  • Education
    • Education HomeNurturing future healthcare leaders through excellence in education
    • MD Program
    • Residencies and Clinical Fellowships
    • PhD Programs
    • Master’s Programs
    • Professional Programs
    • Post-Doctoral Researchers
    • CME, Certificate & Undergraduate Programs
  • Departments, Institutes & Centers
    • Basic Science and Clinical DepartmentsExploring foundational science and specialized clinical fields
    • Institutes and Centers
    • Research Programs
  • About
    • About the Keck SchoolDiscover the mission, history, and vision of the Keck School of Medicine
    • History
    • Leadership
    • Dean’s Corner
    • Life in Southern California
    • Visit
  • Our Faculty
  • Current Students
  • Newsroom
  • Events Calendar
  • Support the Keck School
  • USC.edu
  • Are you a Patient?