Skip to content

Menu
  • USC Stem Cell
  • About
    • Stem Cell FAQs
    • Mission and History
    • California’s Leadership in Stem Cell Research
    • Founding Supporters and Ambassadors
    • Well-being
    • Jobs
  • News & Events
    • News
    • Events
    • Videos
    • Impact Reports and Newsletters
  • Research
    • Department Faculty
    • Eli and Edythe Broad Center Faculty
    • Research Facilities
    • USC+CHLA Alpha Clinic
    • Translational Research Committee
    • USC Stem Cell Research Oversight Committee (SCRO)
    • Apply to Become Center Faculty
  • Education & Training
    • Undergraduate
    • Master’s Program
    • PhD Program
    • Medical Education
    • Postdoctoral Opportunities
    • Our Trainees
  • Funding
  • Inclusive Excellence
  • Support Us
  • Contact
    • Directory
    • Subscribe
  • Search

USC study shows how skeletal stem cells form the blueprint of the face

By  Cristy Lytal

Posted April 21, 2016
Reading Time 2 minutes

in this section

  • News
  • Events
  • Videos
  • Impact Reports and Newsletters

read this next

Lindsey Barske (Photo by Cristy Lytal)

USC Stem Cell scientist Lindsey Barske wins NIH Pathway to Independence Award

  • Follow us on
  • Like us on
  • Follow us on
  • Follow us on
A three-day-old zebrafish head skeleton with newly differentiated cartilage cells (magenta) emerging from a pool of skeletal progenitor cells (green) (Image by Lindsey Barske)
A three-day-old zebrafish head skeleton with newly differentiated cartilage cells (magenta) emerging from a pool of skeletal progenitor cells (green) (Image by Lindsey Barske)

Timing is everything when it comes to the development of the vertebrate face. In a new study published in PLoS Genetics, USC Stem Cell researcher Lindsey Barske from the laboratory of Gage Crump and her colleagues identify the roles of key molecular signals that control this critical timing.

Previous work from the Crump and other labs demonstrated that two types of molecular signals, called Jagged-Notch and Endothelin1 (Edn1), are critical for shaping the face. Loss of these signals results in facial deformities in both zebrafish and humans, revealing these as essential for patterning the faces of all vertebrates.

Using sophisticated genetic, genomic and imaging tools to study zebrafish, the researchers discovered that Jagged-Notch and Edn1 work in tandem to control where and when stem cells turn into facial cartilage. In the lower face, Edn1 signals accelerate cartilage formation early in development. In the upper face, Jagged-Notch signals prevent stem cells from making cartilage until later in development. The authors found that these differences in the timing of stem cells turning into cartilage play a major role in making the upper and lower regions of the face distinct from one another.

“We’ve shown that the earliest blueprint of the facial skeleton is set up by spatially intersecting signals that control when stem cells turn into cartilage or bone. Logically, therefore, small shifts in the levels of these signals throughout evolution could account for much of the diversity of shapes we see within the skulls of different animals, as well as the wonderful array of facial shapes seen in humans,” said Barske, lead author and A.P. Giannini postdoctoral research fellow.

Additional co-authors include: Amjad Askary, Elizabeth Zuniga, Bartosz Balczerski and Paul Bump from USC; and James T. Nichols from the University of Oregon.

The work was supported by the National Institute of Dental and Craniofacial Research (R01 DE018405 and K99/R00 DE024190), the March of Dimes, the National Institute on Deafness and Other Communication Disorders (5T32DC009975) and the A.P. Giannini Foundation. The USC Office of Research and the Norris Medical Library funded the bioinformatics software and computing resources used in the analysis.

Read more about: Muscles and Skeleton
Mentioned in this article: Gage Crump, PhD

Post navigation

← Americans for Cures animations highlight stem cell clinical trials
USC Stem Cell scientists enter the conversation about CRISPR →
Keck School of Medicine of USC
1975 Zonal Ave.
Los Angeles, CA 90033
Google Map
Phone: (323) 442-1900
Hours:
Monday–Friday
7:30am–5:00pm PST
Resources For
  • Current Students
  • Faculty & Staff
  • Patients
  • Community
  • Press
  • Visitors
Areas of Focus
  • Education & Training
  • Research
  • Patient Care
  • Community
Departments and Offices
  • Departments
  • Institutes and Centers
  • Research Programs
  • Administrative Offices
About Keck
  • History
  • Leadership
  • Annual Report
  • Digital Accessibility
Intranet
  • Privacy Notice
  • Notice of Non-Discrimination
  • Smoke-Free Policy

Copyright © 2025 University of Southern California

  • Research
    • Research HomeCutting-edge research drives innovation in healthcare at the Keck School of Medicine
    • Where Research Happens
    • Research Funding
    • Training and Education
    • Researcher Resources
    • Collaborate and Partner
  • Education
    • Education HomeNurturing future healthcare leaders through excellence in education
    • MD Program
    • Residencies and Clinical Fellowships
    • PhD Programs
    • Master’s Programs
    • Professional Programs
    • Post-Doctoral Researchers
    • CME, Certificate & Undergraduate Programs
  • Departments, Institutes & Centers
    • Basic Science and Clinical DepartmentsExploring foundational science and specialized clinical fields
    • Institutes and Centers
    • Research Programs
  • About
    • About the Keck SchoolDiscover the mission, history, and vision of the Keck School of Medicine
    • History
    • Leadership
    • Dean’s Corner
    • Life in Southern California
    • Visit
  • Our Faculty
  • Current Students
  • Newsroom
  • Events Calendar
  • Support the Keck School
  • USC.edu
  • Are you a Patient?