Skip to content

Menu
  • USC Stem Cell
  • About
    • Stem Cell FAQs
    • Mission and History
    • California’s Leadership in Stem Cell Research
    • Founding Supporters and Ambassadors
    • Well-being
    • Jobs
  • News & Events
    • News
    • Events
    • Videos
    • Impact Reports and Newsletters
  • Research
    • Department Faculty
    • Eli and Edythe Broad Center Faculty
    • Research Facilities
    • USC+CHLA Alpha Clinic
    • Translational Research Committee
    • USC Stem Cell Research Oversight Committee (SCRO)
    • Apply to Become Center Faculty
  • Education & Training
    • Undergraduate
    • Master’s Program
    • PhD Program
    • Medical Education
    • Postdoctoral Opportunities
    • Our Trainees
  • Funding
  • Inclusive Excellence
  • Support Us
  • Contact
    • Directory
    • Subscribe
  • Search

Organoids reveal how to protect the brain against dementia and ALS following traumatic injury, according to USC Stem Cell study

By  Cristy Lytal

Posted April 4, 2024
Reading Time 3 minutes

in this section

  • News
  • Events
  • Videos
  • Impact Reports and Newsletters

read this next

Kidney organoids with proximal tubules (Image by Jack Schnell/Lindström Lab)

$3.95 million CIRM grant establishes USC ASCEND Center to make stem cell-derived organ models accessible to all

  • Follow us on
  • Like us on
  • Follow us on
  • Follow us on
Organoid with neurons labeled in green (Image by Joshua Berlind/Ichida Lab)
Organoid with neurons labeled in green (Image by Joshua Berlind/Ichida Lab)

A traumatic brain injury (TBI) can quadruple your risk for developing dementia, and also increase your chances of developing neurodegenerative diseases such as ALS. In a new study published in Cell Stem Cell, USC scientists use lab-grown human brain structures known as organoids to offer insights into why this is the case and how to mitigate the risk.

In the study, former postdoc Jesse Lai and postdoc Joshua Berlind from the USC Stem Cell laboratory of Justin Ichida used human patient-derived stem cells to grow rudimentary brain structures known as organoids in the lab. They then injured these organoids with high-intensity ultrasound waves.

The injured organoids showed some of the same features seen in TBI patients, including nerve cell death and pathological changes in tau proteins, as well as in a protein called TDP-43.

The scientists found that the pathological changes in TDP-43 were more prevalent in organoids derived from patients with ALS or frontotemporal dementia, making their nerve cells more susceptible to dysfunction and death following injury. This suggests that TBI might increase the risk of developing these diseases even more for patients with a genetic predisposition. The worst injuries were sustained by nerve cells that share information—called excitatory neurons—located in the deep layers of the organoids.

In their search for ways to protect these neurons against the effects TBI, the scientists identified a gene called KCNJ2, which contains instructions for making channels that selectively allow potassium to pass through the cell membrane, helping enable muscle contraction and relaxation. Inhibiting this gene had a protective effect on organoids derived from patients with and without ALS, as well as on mice, following a TBI.

“Targeting KCNJ2 may reduce the death of nerve cells after TBI,” said Ichida, who is the John Douglas French Alzheimer’s Foundation Associate Professor of Stem Cell Biology and Regenerative Medicine at USC, and a principal investigator at the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC. “This could have potential as either a post-injury treatment or as a prophylactic for athletes and others at high risk for TBI.”

About the authors and the study

Co-corresponding author Ichida is also a co-founder of AcuraStem and Modulo Bio, a Scientific Advisory Board (SAB) member at Spinogenix and Vesalius Therapeutics, and an employee in the Research and Early Development group at BioMarin Pharmaceutical. Co-corresponding author Lai and co-author Violeta Yu were both employees of Amgen during the study, and currently work at Dewpoint Therapeutics. Named companies were not involved in this research project.

First author Berlind is a PhD student in the Ichida Lab. Additional co-authors are Gabriella Fricklas, Cecilia Lie, Jean-Paul Urenda, Kelsey Lam, Naomi Sta Maria, Russell Jacobs, and Zhen Zhao from USC.

Fifty percent of the work was supported by federal funding from the National Institute of Neurological Disorders and Stroke (NINDS) and the National Institute on Aging (grant F31NS117075), NINDS (grant R01 1R01NS097850-01), and the Department of Defense (grant 12907280). The project was also privately funded by an Amgen postdoctoral fellowship, the New York Stem Cell Foundation, the Tau Consortium, the Harrington Discovery Institute, the Alzheimer’s Drug Discovery Foundation, the Association for Frontotemporal Dementia, and the John Douglas French Alzheimer’s Foundation.

Read more about: Brain Nerves and Senses
Mentioned in this article: Justin Ichida, PhD

Post navigation

← A green light to build muscle cells on command
Keck School of Medicine of USC orthopaedic surgery chair elected as 2024 AAAS fellow →
Keck School of Medicine of USC
1975 Zonal Ave.
Los Angeles, CA 90033
Google Map
Phone: (323) 442-1900
Hours:
Monday–Friday
7:30am–5:00pm PST
Resources For
  • Current Students
  • Faculty & Staff
  • Patients
  • Community
  • Press
  • Visitors
Areas of Focus
  • Education & Training
  • Research
  • Patient Care
  • Community
Departments and Offices
  • Departments
  • Institutes and Centers
  • Research Programs
  • Administrative Offices
About Keck
  • History
  • Leadership
  • Annual Report
  • Digital Accessibility
Intranet
  • Privacy Notice
  • Notice of Non-Discrimination
  • Smoke-Free Policy

Copyright © 2025 University of Southern California

  • Research
    • Research HomeCutting-edge research drives innovation in healthcare at the Keck School of Medicine
    • Where Research Happens
    • Research Funding
    • Training and Education
    • Researcher Resources
    • Collaborate and Partner
  • Education
    • Education HomeNurturing future healthcare leaders through excellence in education
    • MD Program
    • Residencies and Clinical Fellowships
    • PhD Programs
    • Master’s Programs
    • Professional Programs
    • Post-Doctoral Researchers
    • CME, Certificate & Undergraduate Programs
  • Departments, Institutes & Centers
    • Basic Science and Clinical DepartmentsExploring foundational science and specialized clinical fields
    • Institutes and Centers
    • Research Programs
  • About
    • About the Keck SchoolDiscover the mission, history, and vision of the Keck School of Medicine
    • History
    • Leadership
    • Dean’s Corner
    • Life in Southern California
    • Visit
  • Our Faculty
  • Current Students
  • Newsroom
  • Events Calendar
  • Support the Keck School
  • USC.edu
  • Are you a Patient?