Skip to content

Menu
  • USC Stem Cell
  • About
    • Stem Cell FAQs
    • Mission and History
    • California’s Leadership in Stem Cell Research
    • Founding Supporters and Ambassadors
    • Well-being
    • Jobs
  • News & Events
    • News
    • Events
    • Videos
    • Impact Reports and Newsletters
  • Research
    • Department Faculty
    • Eli and Edythe Broad Center Faculty
    • Research Facilities
    • USC+CHLA Alpha Clinic
    • Translational Research Committee
    • USC Stem Cell Research Oversight Committee (SCRO)
    • Apply to Become Center Faculty
  • Education & Training
    • Undergraduate
    • Master’s Program
    • PhD Program
    • Medical Education
    • Postdoctoral Opportunities
    • Our Trainees
  • Funding
  • Inclusive Excellence
  • Support Us
  • Contact
    • Directory
    • Subscribe
  • Search

USC Stem Cell scientists lay a TRAP for disease

By  Cristy Lytal

Posted July 11, 2014
Reading Time 2 minutes

in this section

  • News
  • Events
  • Videos
  • Impact Reports and Newsletters

read this next

Embryonic day 15.5 mouse kidney next to a 15.5 week human fetal kidney with SIX2 (cyan) marking the nephron progenitors and cytokeratin (red) highlighting the collecting duct system. Nuclei are in blue. (Image by Lori O'Brien)

USC researchers discover a key difference between mouse and human kidney stem cells

  • Follow us on
  • Like us on
  • Follow us on
  • Follow us on
From right, Jing Liu, Andy McMahon and Sanjeev Kumar (Photo by Cristy Lytal)
From right, Jing Liu, Andy McMahon and Sanjeev Kumar (Photo by Cristy Lytal)

USC Stem Cell scientists have set a “mouse TRAP” to capture the early signs of kidney failure, as described by a recent study published in the Journal of Clinical Investigation. Their new transgenic mouse line uses a technique called TRAP to extract cellular and genetic information from a variety of solid organs.

Invented by scientists at The Rockefeller University in 2008, TRAP involves attaching a fluorescent tag to the protein-making machinery, or ribosomes, of the cell type of interest. Scientists can then collect the tagged ribosomes and determine which active genes are ordering proteins to be made by these ribosomes. (TRAP stands for “translating ribosome affinity purification.”)

Following up on this breakthrough, the USC team — led by Jing Liu, senior research associate in the laboratory of Andy McMahon — has made the technique simpler and more accessible by engineering a TRAP mouse. When bred with any one of thousands of existing strains of transgenic mice, the TRAP mouse produces progeny with tagged ribosomes in specific organs or cell types.

To demonstrate how useful this can be, Liu and her colleagues used TRAP mice to tag four different types of kidney cells and identify early signals of acute kidney injury.

As a consequence of surgery, infections or drug toxicity, five to seven percent of all hospitalized patients experience acute kidney injury, which can lead to chronic kidney disease or death.

Currently, doctors can only detect acute kidney injury a full day after it occurs. The TRAP mouse enables earlier detection, which will greatly improve patients’ health.

“The technology is simple, and the kidney field is very excited about our results,” said Liu. “I anticipate that the TRAP mouse will advance our cellular and molecular understanding of a wide variety of diseases and injuries in many different organ systems.”

Along with Liu and McMahon, co-authors include A. Michaela Krautzberger, Shannan H. Sui, Oliver M. Hofmann, Ying Chen, Manfred Baetscher, Ivica Grgic, Sanjeev Kumar, Benjamin Humphreys and Winston A. Hide.

The research was supported by the Harvard Stem Cell Institute and the California Institute for Regenerative Medicine (53-5178-7980) as well as by Grgic’s fellowship from the Deutsche Forschungsgemeinschaft (GR 3301/4-1).

Read more about: Kidney and Urinary System
Mentioned in this article: Andrew P. McMahon, PhD, FRS

Post navigation

← Min Yu targets the “seeds” of breast cancer metastasis
PIBBS boasts stellar new class of students →
Keck School of Medicine of USC
1975 Zonal Ave.
Los Angeles, CA 90033
Google Map
Phone: (323) 442-1900
Hours:
Monday–Friday
7:30am–5:00pm PST
Resources For
  • Current Students
  • Faculty & Staff
  • Patients
  • Community
  • Press
  • Visitors
Areas of Focus
  • Education & Training
  • Research
  • Patient Care
  • Community
Departments and Offices
  • Departments
  • Institutes and Centers
  • Research Programs
  • Administrative Offices
About Keck
  • History
  • Leadership
  • Annual Report
  • Digital Accessibility
Intranet
  • Privacy Notice
  • Notice of Non-Discrimination
  • Smoke-Free Policy

Copyright © 2025 University of Southern California

  • Research
    • Research HomeCutting-edge research drives innovation in healthcare at the Keck School of Medicine
    • Where Research Happens
    • Research Funding
    • Training and Education
    • Researcher Resources
    • Collaborate and Partner
  • Education
    • Education HomeNurturing future healthcare leaders through excellence in education
    • MD Program
    • Residencies and Clinical Fellowships
    • PhD Programs
    • Master’s Programs
    • Professional Programs
    • Post-Doctoral Researchers
    • CME, Certificate & Undergraduate Programs
  • Departments, Institutes & Centers
    • Basic Science and Clinical DepartmentsExploring foundational science and specialized clinical fields
    • Institutes and Centers
    • Research Programs
  • About
    • About the Keck SchoolDiscover the mission, history, and vision of the Keck School of Medicine
    • History
    • Leadership
    • Dean’s Corner
    • Life in Southern California
    • Visit
  • Our Faculty
  • Current Students
  • Newsroom
  • Events Calendar
  • Support the Keck School
  • USC.edu
  • Are you a Patient?