Skip to content

Menu
  • USC Stem Cell
  • About
    • Stem Cell FAQs
    • Mission and History
    • California’s Leadership in Stem Cell Research
    • Founding Supporters and Ambassadors
    • Well-being
    • Jobs
  • News & Events
    • News
    • Events
    • Videos
    • Impact Reports and Newsletters
  • Research
    • Department Faculty
    • Eli and Edythe Broad Center Faculty
    • Research Facilities
    • USC+CHLA Alpha Clinic
    • Translational Research Committee
    • USC Stem Cell Research Oversight Committee (SCRO)
    • Apply to Become Center Faculty
  • Education & Training
    • Undergraduate
    • Master’s Program
    • PhD Program
    • Medical Education
    • Postdoctoral Opportunities
    • Our Trainees
  • Funding
  • Inclusive Excellence
  • Support Us
  • Contact
    • Directory
    • Subscribe
  • Search

A genetic catch-22 promotes and prevents liver cancer

By  Cristy Lytal

Posted August 5, 2013
Reading Time 3 minutes

in this section

  • News
  • Events
  • Videos
  • Impact Reports and Newsletters

read this next

Chemotherapy kills most cancer cells, but cancer stem cell survive and seed a new tumor that resists chemotherapy.

Scientists root out the “bad seeds” of liver cancer

  • Follow us on
  • Like us on
  • Follow us on
  • Follow us on
Qi-Long Ying (Photo by Cristy Lytal)
Qi-Long Ying (Photo by Cristy Lytal)

Can the same gene prevent and promote cancer? When it comes to liver cancer, the gene that codes for P53, a protein found in humans and many other animals, involves this catch-22.

In a pair of articles published in Oncogene and the Journal of Hepatology, USC faculty member Qi-Long Ying and a team of researchers revealed that P53 can both help and harm a liver exposed to carcinogenic chemicals.

The good news: P53 serves as a guardian against tumors by inducing potentially pre-cancerous liver cells to “commit suicide” or go into growth arrest. The bad news: These dying cells can trigger inflammation, which in turn can promote a cancer known as hepatocellular carcinoma (HCC).

In humans, common causes of HCC include exposure to viruses such as Hepatitis B, which is especially prevalent in East Asia and sub-Saharan Africa. Liver cancer is a leading cause of cancer-related death worldwide.

As reported in Oncogene, Ying’s team studied this prevalent form of cancer by genetically engineering rats with abnormally low levels of P53 and comparing them to regular rats. When chronically exposed to a chemical known to cause liver cancer, the P53-deficient rats surprised the researchers by faring better than their normal peers, exhibiting less inflammation and cirrhosis, as well as fewer liver tumors.

Building on these findings, an article in the Journal of Hepatology suggested there may be a way to reap the benefits of P53’s guardian functions while avoiding chronic, cancer-promoting inflammation. That’s because P53 itself doesn’t cause inflammation directly, but rather by triggering the release of a highly inflammatory molecule called HMGB1. When exposed to carcinogens, rats developed less cirrhosis and fewer liver tumors if they were also given ethyl pyruvate, an anti-inflammatory that blocks HMGB1 but doesn’t interfere with P53’s beneficial functions.

“In these two papers, we’ve discovered a dark side of the gene that codes for P53 — which a lot of people think is a good gene,” Ying said. “But you cannot just simply say a gene is good or bad. Every gene can do bad things and can also do good things, depending on the environment. So P53 actually promotes tumorigenesis in the particular case described in our paper.”

As researchers continue to study HCC and other cancers, the P53-deficient rat, produced using genetic material from rat embryonic stem cells, will continue to provide useful insights.

Ying, associate professor of cell and neurobiology at the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, collaborated with several colleagues on these studies. Co-authors on both studies include He-Xin Yan, Hong-Ping Wu, Charles Ashton and Chang Tong from the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC and Hui-Lu Zhang, Han Wu, Qi-Jun Qian and Hong-Yang Wang from the Second Military Medical University in Shanghai. Yan and Wu are also affiliated with the Second Military Medical University.

The National Institutes of Health provided funding for these projects (grant number R01OD010926). The Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning provided additional support for the research published in the Journal of Hepatology.

Read more about: Cancer, Digestion and Metabolism
Mentioned in this article: Qi-Long Ying, MD, PhD

Post navigation

← Stem cells found in gum tissue can fight inflammatory disease
USC announces winners of first Regenerative Medicine Initiative awards →
Keck School of Medicine of USC
1975 Zonal Ave.
Los Angeles, CA 90033
Google Map
Phone: (323) 442-1900
Hours:
Monday–Friday
7:30am–5:00pm PST
Resources For
  • Current Students
  • Faculty & Staff
  • Patients
  • Community
  • Press
  • Visitors
Areas of Focus
  • Education & Training
  • Research
  • Patient Care
  • Community
Departments and Offices
  • Departments
  • Institutes and Centers
  • Research Programs
  • Administrative Offices
About Keck
  • History
  • Leadership
  • Annual Report
  • Digital Accessibility
Intranet
  • Privacy Notice
  • Notice of Non-Discrimination
  • Smoke-Free Policy

Copyright © 2025 University of Southern California

  • Research
    • Research HomeCutting-edge research drives innovation in healthcare at the Keck School of Medicine
    • Where Research Happens
    • Research Funding
    • Training and Education
    • Researcher Resources
    • Collaborate and Partner
  • Education
    • Education HomeNurturing future healthcare leaders through excellence in education
    • MD Program
    • Residencies and Clinical Fellowships
    • PhD Programs
    • Master’s Programs
    • Professional Programs
    • Post-Doctoral Researchers
    • CME, Certificate & Undergraduate Programs
  • Departments, Institutes & Centers
    • Basic Science and Clinical DepartmentsExploring foundational science and specialized clinical fields
    • Institutes and Centers
    • Research Programs
  • About
    • About the Keck SchoolDiscover the mission, history, and vision of the Keck School of Medicine
    • History
    • Leadership
    • Dean’s Corner
    • Life in Southern California
    • Visit
  • Our Faculty
  • Current Students
  • Newsroom
  • Events Calendar
  • Support the Keck School
  • USC.edu
  • Are you a Patient?