Skip to content

Menu
  • USC Stem Cell
  • About
    • Stem Cell FAQs
    • Mission and History
    • California’s Leadership in Stem Cell Research
    • Founding Supporters and Ambassadors
    • Well-being
    • Jobs
  • News & Events
    • News
    • Events
    • Videos
    • Impact Reports and Newsletters
  • Research
    • Department Faculty
    • Eli and Edythe Broad Center Faculty
    • Research Facilities
    • USC+CHLA Alpha Clinic
    • Translational Research Committee
    • USC Stem Cell Research Oversight Committee (SCRO)
    • Apply to Become Center Faculty
  • Education & Training
    • Undergraduate
    • Master’s Program
    • PhD Program
    • Medical Education
    • Postdoctoral Opportunities
    • Our Trainees
  • Funding
  • Inclusive Excellence
  • Support Us
  • Contact
    • Directory
    • Subscribe
  • Search

The protein TAZ sends “mixed signals” to stem cells

By  Cristy Lytal

Posted August 24, 2017
Reading Time 3 minutes

in this section

  • News
  • Events
  • Videos
  • Impact Reports and Newsletters

read this next

Qi-Long Ying (Photo by Cristy Lytal)

Scientists Qi-Long Ying and Austin Smith win the 2016 McEwen Award for Innovation

  • Follow us on
  • Like us on
  • Follow us on
  • Follow us on
The protein TAZ (green) in the cytoplasm (the region outside of the nuclei, blue) promotes the self-renewal of human embryonic stem cells. (Image by Xingliang Zhou)
The protein TAZ (green) in the cytoplasm (the region outside of the nuclei, blue) promotes the self-renewal of human embryonic stem cells. (Image by Xingliang Zhou)

Just as beauty exists in the eye of the beholder, a signal depends upon the interpretation of the receiver. According to new USC research published in Stem Cell Reports, a protein called TAZ can convey very different signals—depending upon not only which variety of stem cell, but also which part of the stem cell receives it.

When it comes to varieties, some stem cells are “naïve” blank slates; others are “primed” to differentiate into certain types of more specialized cells. Among the truly naïve are mouse embryonic stem cells (ESCs), while the primed variety includes the slightly more differentiated mouse epiblast stem cells (EpiSCs) as well as so-called human “ESCs”—which may not be true ESCs at all.

In the new study, PhD student Xingliang Zhou and colleagues in the laboratory of Qi-Long Ying demonstrated that naïve mouse ESCs don’t require TAZ in order to self-renew and produce more stem cells. However, they do need TAZ in order to differentiate into mouse EpiSCs.

The scientists observed an even more nuanced situation for the primed varieties of stem cells: mouse EpiSCs and human ESCs. When TAZ is located in the nucleus, this prompts primed stem cells to differentiate into more specialized cell types—a response similar to that of the naïve cells. However, if TAZ is in the cytoplasm, or the region between the nucleus and outer membrane, primed stem cells have the opposite reaction: they self-renew.

“TAZ has stirred up a lot of controversy in our field, because it appears to produce diverse and sometimes opposite effects in pluripotent stem cells,” said Ying, senior author and associate professor of stem cell biology and regenerative medicine. “It turns out that TAZ can indeed produce opposite effects, depending upon both its subcellular location and the cell type in question.”

First author Zhou added: “TAZ provides a new tool to stimulate stem cells to either differentiate or self-renew. This could have important regenerative medicine applications, including the development of a better way to generate the desired cell types for cell replacement therapy.”

Additional co-authors include Ying Lab members Jean Paul Chadarevian and Bryan Ruiz.

This research project was funded by a California Institute for Regenerative Medicine (CIRM) New Faculty Award II (RN2-00938), a CIRM Scientific Excellence through Exploration and Development (SEED) Grant (RS1-00327), and the Chen Yong Foundation of the Zhongmei Group. Zhou was also supported by a federally funded predoctoral fellowship from the Eunice Kennedy Shriver National Institute of Child Health and Human Development/USC Joint T32 Training Program in Developmental Biology, Stem Cells, and Regeneration.

Read more about: Brain Nerves and Senses, Cancer, Heart Lung and Blood
Mentioned in this article: Qi-Long Ying, MD, PhD

Post navigation

← Biotech entrepreneur Min Zhou supports scientific serendipity in the USC Stem Cell laboratory of Qi-Long Ying
A revolution in genetics →
Keck School of Medicine of USC
1975 Zonal Ave.
Los Angeles, CA 90033
Google Map
Phone: (323) 442-1900
Hours:
Monday–Friday
7:30am–5:00pm PST
Resources For
  • Current Students
  • Faculty & Staff
  • Patients
  • Community
  • Press
  • Visitors
Areas of Focus
  • Education & Training
  • Research
  • Patient Care
  • Community
Departments and Offices
  • Departments
  • Institutes and Centers
  • Research Programs
  • Administrative Offices
About Keck
  • History
  • Leadership
  • Annual Report
  • Digital Accessibility
Intranet
  • Privacy Notice
  • Notice of Non-Discrimination
  • Smoke-Free Policy

Copyright © 2025 University of Southern California

  • Research
    • Research HomeCutting-edge research drives innovation in healthcare at the Keck School of Medicine
    • Where Research Happens
    • Research Funding
    • Training and Education
    • Researcher Resources
    • Collaborate and Partner
  • Education
    • Education HomeNurturing future healthcare leaders through excellence in education
    • MD Program
    • Residencies and Clinical Fellowships
    • PhD Programs
    • Master’s Programs
    • Professional Programs
    • Post-Doctoral Researchers
    • CME, Certificate & Undergraduate Programs
  • Departments, Institutes & Centers
    • Basic Science and Clinical DepartmentsExploring foundational science and specialized clinical fields
    • Institutes and Centers
    • Research Programs
  • About
    • About the Keck SchoolDiscover the mission, history, and vision of the Keck School of Medicine
    • History
    • Leadership
    • Dean’s Corner
    • Life in Southern California
    • Visit
  • Our Faculty
  • Current Students
  • Newsroom
  • Events Calendar
  • Support the Keck School
  • USC.edu
  • Are you a Patient?