Skip to content

Menu
  • USC Stem Cell
  • About
    • Stem Cell FAQs
    • Mission and History
    • California’s Leadership in Stem Cell Research
    • Founding Supporters and Ambassadors
    • Well-being
    • Jobs
  • News & Events
    • News
    • Events
    • Videos
    • Impact Reports and Newsletters
  • Research
    • Department Faculty
    • Eli and Edythe Broad Center Faculty
    • Research Facilities
    • USC+CHLA Alpha Clinic
    • Translational Research Committee
    • USC Stem Cell Research Oversight Committee (SCRO)
    • Apply to Become Center Faculty
  • Education & Training
    • Undergraduate
    • Master’s Program
    • PhD Program
    • Medical Education
    • Postdoctoral Opportunities
    • Our Trainees
  • Funding
  • Inclusive Excellence
  • Support Us
  • Contact
    • Directory
    • Subscribe
  • Search

USC Stem Cell study throws our understanding of gene regulation for a loop

By  Cristy Lytal

Posted January 16, 2024
Reading Time 3 minutes

in this section

  • News
  • Events
  • Videos
  • Impact Reports and Newsletters

read this next

Oliver Bell

Design redundancy is in our DNA

  • Follow us on
  • Like us on
  • Follow us on
  • Follow us on
Oliver Bell and Daniel Bsteh
Oliver Bell (left) and Daniel Bsteh (Photo by Andi Pauli)

The blueprint for human life lies within the DNA in the nucleus of each of our cells. In human cells, around six and a half feet of this genetic material must be condensed to fit inside the nucleus. DNA condensation is not random. To function properly, the genetic material is highly organized into loop structures that often bring together widely separated sections of the genome critical to the regulation of gene activity. In a new paper published in Nature Communications, USC Stem Cell scientists from the laboratory of Oliver Bell address how these loops can help repress or silence gene activity, with potentially far-reaching effects on human health.

“A carefully orchestrated regulatory machinery is required to ensure every cell in the body is expressing its correct gene set to exert its dedicated function,” said the study’s first author Daniel Bsteh, who began the research at the Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), and completed it at the Keck School of Medicine of USC during his PhD. He is currently the Liquid Biopsy Core Manager at the USC Norris Comprehensive Cancer Center.

In the study, Bsteh and his colleagues specifically examined developmental genes that are repressed by molecules known as Polycomb Repressive Complexes 1 and 2 (PRC1 and PRC2). PRC1 and PRC2 are regulators that prevent developmental genes from becoming activated at the wrong time or in the wrong cell, which has been shown to cause changes in cellular identity, leading to developmental defects, or transformation into cancer cells.

When PRC1- and PRC2-repressed genes come together, the genome forms loops. Loops are known to play a role in activating genes, but it has been more challenging to study how loops might help repress genes. This is because of the interdependence of loops with a different type of gene repressing mechanism known as histone modifications.

Through a genetic screen conducted in mouse embryonic stem cells, the scientists identified a protein, PDS5A, that modifies loops without affecting histone modifications. This enabled Bsteh and colleagues to specifically study the effects of loops and 3D genome organization on gene silencing.

The loss of PDS5A disrupted the loops—and therefore the long-range interactions between repressed developmental genes. Further, looping genes together maintains the silent state. When PRC1- and PRC2-repressed genes are physically separated, eliminating the loops, normally silent genes become activated in aberrant ways.

“PDS5A is a subunit of a larger protein complex called cohesin, which is the master regulator of 3D genome organization,” said Bell, an assistant professor of biochemistry and molecular medicine, and stem cell biology and regenerative medicine, and a member of the USC Norris Comprehensive Cancer Center. “Cohesin mutations are known to drive several human diseases, including developmental disorders and cancer. What’s striking about our discovery is that it reveals a dependence of PRC 1 and PRC 2 activity on the precise regulation of 3D genome organization by cohesin, suggesting that ‘cohesinopathies’ may be linked to aberrant developmental gene silencing.”

Additional authors include Hagar F. Moussa, Georg Michlits, Ramesh Yelagandula, Jingkui Wang, and Ulrich Elling from the IMBA.

Support for this research came from the Austrian Academy of Sciences, the New Frontiers Group of the Austrian Academy of Sciences (grant NFG-05), the Human Frontiers Science Program Career Development Award (CDA00036/2014-C), and startup funding from the USC Norris Comprehensive Cancer Center.

Read more about: Brain Nerves and Senses, Cancer, Digestion and Metabolism, Muscles and Skeleton
Mentioned in this article: Oliver Bell, PhD

Post navigation

← 2024 Segil Stem Cell Travel Scholarship: Call for Applications
USC Stem Cell study shows how gene activity modulates the amount of immune cell production in mice →
Keck School of Medicine of USC
1975 Zonal Ave.
Los Angeles, CA 90033
Google Map
Phone: (323) 442-1900
Hours:
Monday–Friday
7:30am–5:00pm PST
Resources For
  • Current Students
  • Faculty & Staff
  • Patients
  • Community
  • Press
  • Visitors
Areas of Focus
  • Education & Training
  • Research
  • Patient Care
  • Community
Departments and Offices
  • Departments
  • Institutes and Centers
  • Research Programs
  • Administrative Offices
About Keck
  • History
  • Leadership
  • Annual Report
  • Digital Accessibility
Intranet
  • Privacy Notice
  • Notice of Non-Discrimination
  • Smoke-Free Policy

Copyright © 2025 University of Southern California

  • Research
    • Research HomeCutting-edge research drives innovation in healthcare at the Keck School of Medicine
    • Where Research Happens
    • Research Funding
    • Training and Education
    • Researcher Resources
    • Collaborate and Partner
  • Education
    • Education HomeNurturing future healthcare leaders through excellence in education
    • MD Program
    • Residencies and Clinical Fellowships
    • PhD Programs
    • Master’s Programs
    • Professional Programs
    • Post-Doctoral Researchers
    • CME, Certificate & Undergraduate Programs
  • Departments, Institutes & Centers
    • Basic Science and Clinical DepartmentsExploring foundational science and specialized clinical fields
    • Institutes and Centers
    • Research Programs
  • About
    • About the Keck SchoolDiscover the mission, history, and vision of the Keck School of Medicine
    • History
    • Leadership
    • Dean’s Corner
    • Life in Southern California
    • Visit
  • Our Faculty
  • Current Students
  • Newsroom
  • Events Calendar
  • Support the Keck School
  • USC.edu
  • Are you a Patient?