Skip to content

Menu
  • USC Stem Cell
  • About
    • Stem Cell FAQs
    • Mission and History
    • California’s Leadership in Stem Cell Research
    • Founding Supporters and Ambassadors
    • Well-being
    • Jobs
  • News & Events
    • News
    • Events
    • Videos
    • Impact Reports and Newsletters
  • Research
    • Department Faculty
    • Eli and Edythe Broad Center Faculty
    • Research Facilities
    • USC+CHLA Alpha Clinic
    • Translational Research Committee
    • USC Stem Cell Research Oversight Committee (SCRO)
    • Apply to Become Center Faculty
  • Education & Training
    • Undergraduate
    • Master’s Program
    • PhD Program
    • Medical Education
    • Postdoctoral Opportunities
    • Our Trainees
  • Funding
  • Inclusive Excellence
  • Support Us
  • Contact
    • Directory
    • Subscribe
  • Search

A gene called Prkci helps organize organisms and their organs

By  Cristy Lytal

Posted June 13, 2016
Reading Time 2 minutes

in this section

  • News
  • Events
  • Videos
  • Impact Reports and Newsletters

read this next

The gene Prkci promotes the generation of differentiated cells (red). However if Prkci activity is reduced or absent, neural stem cells (green) are promoted. (Image by In Kyoung Mah)

A Prkci gene keeps stem cells in check

  • Follow us on
  • Like us on
  • Follow us on
  • Follow us on
Stem cells self-organize to form a hollow ball of cells. (Image by In Kyoung Mah and Francesca Mariani)
Stem cells self-organize to form a hollow ball of cells. (Image by In Kyoung Mah and Francesca Mariani)

A gene called Prkci can point cells in the right direction, according to a new study in Developmental Biology.

In the study, USC Stem Cell researcher In Kyoung Mah from the laboratory of Francesca Mariani and colleagues demonstrated Prkci’s role in organizing cells into balls and tubes during early embryo and organ formation.

In their experiments, the researchers used mouse stem cells to form what are known as embryoid bodies, or clusters of cells that mimic the early development of embryos and organs in a Petri dish.

In these embryoid bodies, as in embryos and organs, cells organize themselves into layers of tissue, called “epithelia,” that separate the inside from the outside. To do so, each cell has an “apical” side designed to line developing cavities and surfaces, and a “basal” end designed to connect to adjoining cells. Without Prkci, the cells can’t organize themselves in the correct apical to basal direction—which is known as polarity—and cavities in the embryoid body don’t form.

Other processes required for forming embryoid body cavities, such as the rate that cells proliferate or die, continued normally in the absence of Prkci—further underscoring that the gene specifically affects polarity.

However, the researchers found that they could restore normal polarity in the cells lacking Prkci by mixing in an equal number of normal cells with functional Prkci. This suggests that the cells with Prkci sent some unknown molecular signal to the cells lacking Prkci, telling them which way to turn.

“Our findings may impact those studying embryonic and organ development, organization and maintenance,” said senior author Mariani, principal investigator at the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC. “Identification of this polarizing signal could help develop clinical strategies to realign cells when they become disoriented, as often occurs in cancers that affect organ epithelia such as lung, breast and prostate.”

Co-authors include: Rachel Soloff from the University of California, San Diego; Audrey K. Izuhara and Daniel L. Lakeland from USC; and Charles Wang from the City of Hope Comprehensive Cancer Center.

The project was supported by USC, the Robert E. and May R. Wright Foundation, and a California Institute for Regenerative Medicine (CIRM) Bridges to Stem Cell Research Award.

Read more about: Brain Nerves and Senses, Cancer, Digestion and Metabolism, Heart Lung and Blood, Kidney and Urinary System, Muscles and Skeleton
Mentioned in this article: Francesca Mariani, PhD

Post navigation

← Joseph T. Rodgers and Hyungjin Eoh win Baxter Awards
USC Stem Cell names second cohort of Broad Clinical Research Fellows →
Keck School of Medicine of USC
1975 Zonal Ave.
Los Angeles, CA 90033
Google Map
Phone: (323) 442-1900
Hours:
Monday–Friday
7:30am–5:00pm PST
Resources For
  • Current Students
  • Faculty & Staff
  • Patients
  • Community
  • Press
  • Visitors
Areas of Focus
  • Education & Training
  • Research
  • Patient Care
  • Community
Departments and Offices
  • Departments
  • Institutes and Centers
  • Research Programs
  • Administrative Offices
About Keck
  • History
  • Leadership
  • Annual Report
  • Digital Accessibility
Intranet
  • Privacy Notice
  • Notice of Non-Discrimination
  • Smoke-Free Policy

Copyright © 2025 University of Southern California

  • Research
    • Research HomeCutting-edge research drives innovation in healthcare at the Keck School of Medicine
    • Where Research Happens
    • Research Funding
    • Training and Education
    • Researcher Resources
    • Collaborate and Partner
  • Education
    • Education HomeNurturing future healthcare leaders through excellence in education
    • MD Program
    • Residencies and Clinical Fellowships
    • PhD Programs
    • Master’s Programs
    • Professional Programs
    • Post-Doctoral Researchers
    • CME, Certificate & Undergraduate Programs
  • Departments, Institutes & Centers
    • Basic Science and Clinical DepartmentsExploring foundational science and specialized clinical fields
    • Institutes and Centers
    • Research Programs
  • About
    • About the Keck SchoolDiscover the mission, history, and vision of the Keck School of Medicine
    • History
    • Leadership
    • Dean’s Corner
    • Life in Southern California
    • Visit
  • Our Faculty
  • Current Students
  • Newsroom
  • Events Calendar
  • Support the Keck School
  • USC.edu
  • Are you a Patient?