Skip to content

Menu
  • USC Stem Cell
  • About
    • Stem Cell FAQs
    • Mission and History
    • California’s Leadership in Stem Cell Research
    • Founding Supporters and Ambassadors
    • Well-being
    • Jobs
  • News & Events
    • News
    • Events
    • Videos
    • Impact Reports and Newsletters
  • Research
    • Department Faculty
    • Eli and Edythe Broad Center Faculty
    • Research Facilities
    • USC+CHLA Alpha Clinic
    • Translational Research Committee
    • USC Stem Cell Research Oversight Committee (SCRO)
    • Apply to Become Center Faculty
  • Education & Training
    • Undergraduate
    • Master’s Program
    • PhD Program
    • Medical Education
    • Postdoctoral Opportunities
    • Our Trainees
  • Funding
  • Inclusive Excellence
  • Support Us
  • Contact
    • Directory
    • Subscribe
  • Search

Subtle cues can dictate the fate of stem cells

By  Cristy Lytal

Posted December 4, 2017
Reading Time 3 minutes

in this section

  • News
  • Events
  • Videos
  • Impact Reports and Newsletters

read this next

The protein TAZ (green) in the cytoplasm (the region outside of the nuclei, blue) promotes the self-renewal of human embryonic stem cells. (Image by Xingliang Zhou)

The protein TAZ sends “mixed signals” to stem cells

  • Follow us on
  • Like us on
  • Follow us on
  • Follow us on
Embryonic stem cells (Image/courtesy of Qi-Long Ying)
Embryonic stem cells (Image/courtesy of Qi-Long Ying)

If you’ve seen one GSK3 molecule, do not assume that you have seen them all. A new study in Developmental Cell reveals important differences in two similar forms of GSK3, which, in excess, is implicated in diabetes, cancer, Alzheimer’s disease and ALS.

In the study, first author Xi Chen—a PhD student in the USC Stem Cell laboratory of Qi-Long Ying—describes how the two similar forms—known as GSK3-beta and GSK3-alpha—can produce very different reactions in embryonic stem cells. Inhibiting GSK3-beta can promote stem cell self-renewal, while inhibiting GSK3-alpha can trigger differentiation into neural cells.

“The key message is that selective inhibition of GSK3-alpha and GSK3-beta has very distinct effects on embryonic stem cell fates,” said Ying, professor of stem cell biology and regenerative medicine at USC. “This is likely also true for other cell types.”

In order to selectively inhibit these two very similar forms of GSK3, the Ying Lab called upon the expertise of colleagues in the Department of Chemistry at the USC Dornsife College of Letters, Arts and Sciences.

“This is an elegant study resulting from collaborative efforts between two labs of complementary expertise. We employed an innovative chemical approach to tackle a biological problem that would be difficult to study using conventional methods,” said Chao Zhang, assistant professor of chemistry.

Inhibition of GSK3 is critical for maintaining embryonic stem cell (ESC) identity (left panel, ESCs are differentiating without inhibition of GSK3; right panel, self-renewing ESCs when GSK3 is inhibited). (Image by Xi Chen/Ying Lab)

These findings carry implications for developing drugs that target overactive GSK3 in certain patients with diabetes, cancer, Alzheimer’s disease and ALS. A drug that targets GSK3 in general could have unintended side effects. However, no drug can target one form of GSK3 without the other, because of their highly similar structures—highlighting the need for more refined approaches to treatment.

Inhibiting only GSK3-beta could also provide a useful tool for producing stem cells that are not merely “pluripotent” but able to contribute to the formation of embryos. These so-called naïve pluripotent stem cells can become any cell type in the body. Currently, scientists have derived naïve pluripotent stem cells from mice and rats, but they have not yet succeeded in obtaining naïve pluripotent stem cells from other species, including humans. Pluripotent human stem cells are the basic building blocks for regenerating any tissue or organ in the body.

Additional co-authors include Ruizhe Wang, Xu Liu, Yongming Wu, Tao Zhou, Yujia Yang, Andrew Perez, Ying-Chu Chen, Liang Hu, Jean Paul Chadarevian and Amir Assadieskandar from USC.

Ten percent of the work was supported by $600,000 in federal funding from the National Science Foundation (CHE-1455306). Ninety percent of the research was funded by $3 million from private and non-federal sources, including the California Institute for Regenerative Medicine (New Faculty Award II RN2-00938 and CIRM Bridges to Stem Cell Research Fellowship), the Cheng Yong Foundation of the Zhongmei Group, the American Cancer Society (IRG-58-007-51), the USC Office of Research, and the USC Norris Medical Library.

Read more about: Brain Nerves and Senses, Cancer, Digestion and Metabolism, Heart Lung and Blood, Kidney and Urinary System, Muscles and Skeleton
Mentioned in this article: Qi-Long Ying, MD, PhD

Post navigation

← Creating new heart muscle out of stem cells? This grad student is doing it
Broad Innovation Award winners work to develop cancer immunotherapy →
Keck School of Medicine of USC
1975 Zonal Ave.
Los Angeles, CA 90033
Google Map
Phone: (323) 442-1900
Hours:
Monday–Friday
7:30am–5:00pm PST
Resources For
  • Current Students
  • Faculty & Staff
  • Patients
  • Community
  • Press
  • Visitors
Areas of Focus
  • Education & Training
  • Research
  • Patient Care
  • Community
Departments and Offices
  • Departments
  • Institutes and Centers
  • Research Programs
  • Administrative Offices
About Keck
  • History
  • Leadership
  • Annual Report
  • Digital Accessibility
Intranet
  • Privacy Notice
  • Notice of Non-Discrimination
  • Smoke-Free Policy

Copyright © 2025 University of Southern California

  • Research
    • Research HomeCutting-edge research drives innovation in healthcare at the Keck School of Medicine
    • Where Research Happens
    • Research Funding
    • Training and Education
    • Researcher Resources
    • Collaborate and Partner
  • Education
    • Education HomeNurturing future healthcare leaders through excellence in education
    • MD Program
    • Residencies and Clinical Fellowships
    • PhD Programs
    • Master’s Programs
    • Professional Programs
    • Post-Doctoral Researchers
    • CME, Certificate & Undergraduate Programs
  • Departments, Institutes & Centers
    • Basic Science and Clinical DepartmentsExploring foundational science and specialized clinical fields
    • Institutes and Centers
    • Research Programs
  • About
    • About the Keck SchoolDiscover the mission, history, and vision of the Keck School of Medicine
    • History
    • Leadership
    • Dean’s Corner
    • Life in Southern California
    • Visit
  • Our Faculty
  • Current Students
  • Newsroom
  • Events Calendar
  • Support the Keck School
  • USC.edu
  • Are you a Patient?